

Explanation-based Learning for NLP Models

Dong-Ho Lee

Problem of "label" only dataset

whether a scientist or janitor, black people are all obedient brutes ... HATE

blacks have been programmed to love watermelon ... HATE

black people from the middle ages have always been watermelon-eating ... HATE

(Machine-Generated Data)

Class
Label

BERT

E[CLS] E1 ... EN E(SEP) E1 ... EM

Sentence 1 Sentence 2

Model may sensitive to **spurious correlations**

ToxiGen: A Large-Scale Machine-Generated Dataset for Adversarial and Implicit Hate Speech Detection., Hartvigsen et al., ACL 2022

Labeling Explanation

whether a scientist or janitor, **black** people are all obedient brutes ... **HATE**

WHY is this **HATE**?

whether a scientist or janitor, black people are all obedient brutes ...

It implies that black people are submissive.

Salient Spans

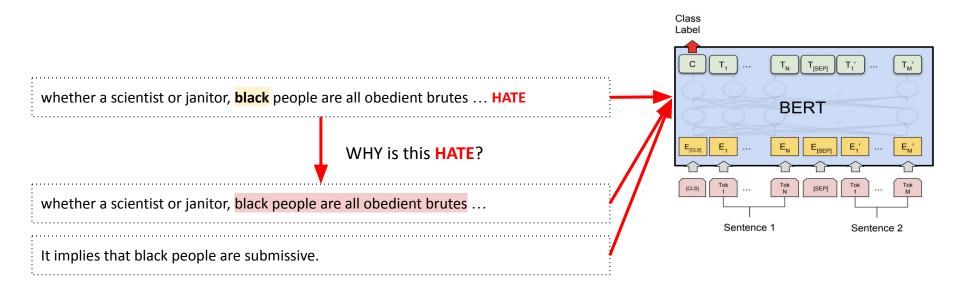
Natural Language

Zaidan et al., 2007 Dua et al., 2020

Camburu et al., 2018 Rajani et al., 2019

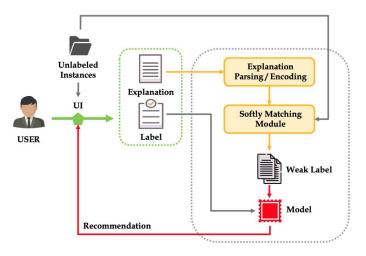
Using Annotator Rationales to Improve Machine Learning for Text Categorization., Zaidan et al., NAACL 2007 Benefits of Intermediate Annotations in Reading Comprehension., Dua et al., ACL 2020 e-SNLI: Natural Language Inference with Natural Language Explanation., Camburu et al., NeurIPS 2018 Explain Yourself! Leveraging Language Models for Commonsense Reasoning., Rajani et al., ACL 2019

Can we leverage explanation?



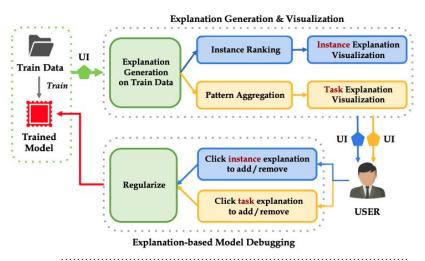
- 1) Leveraging explanation can accelerate model training?
- 2) Can we align human explanation with model explanation?

RQ1) Label-efficient training with human explanation



LEAN-LIFE (Lee et al., ACL 2020 Demo)
TriggerNER (Lee et al., ACL 2020)
NExT (Wang et al., ICLR 2020)

RQ2) Explanation-based Model Debugging



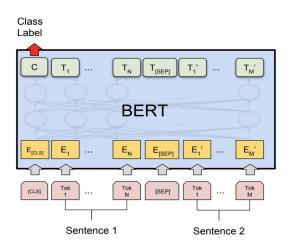
XMD (Lee et al., EMNLP 2022 Demo Submission) ER-Test (Joshi et al., TrustNLP@NAACL 2022)

Label-Efficient Training with Human Explanation

Simple Recipe for Modern NLP

Computing Power

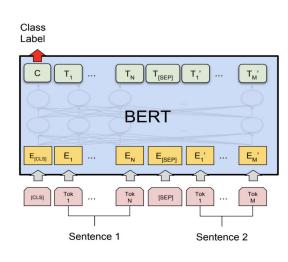
Labeled Dataset



Model

Expensive Cost of Labeled Data





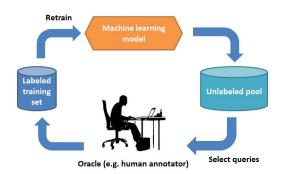
Computing Power

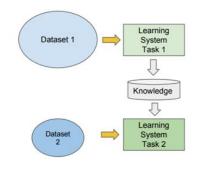
Labeled Dataset

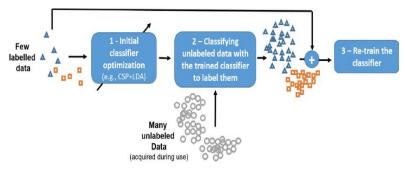
Model

Model and **Computing power** are transferable across applications, but **labeled data** is not. Humans need to annotate for each application.

Previous Efforts Toward Label-Efficient Learning







Active Learning

Transfer Learning

Semi-Supervised Learning

Capture and Leverage High-level Supervision

Easy to Use Annotation Framework Faster learning w/ Explanations Explanation **Explanation** is the president of the University of Southern California. Parsing / Encoding The word "Paris" appears left before "president" + Add Additional Explanation **Softly Matching** Module PER Weak Label Paris is the president of the University of Southern California. Model Recommendation section

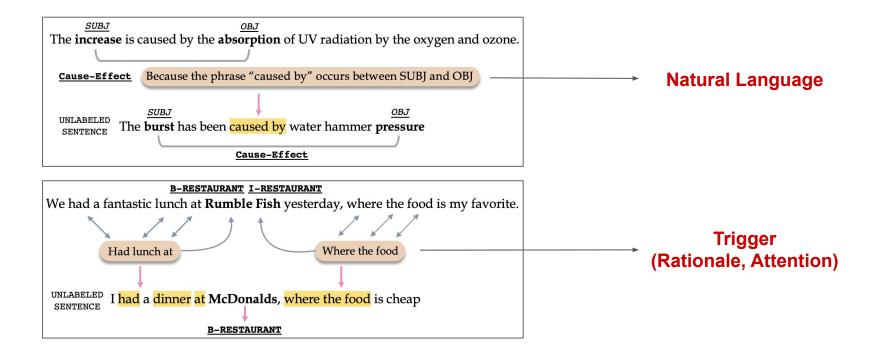
USC Viterbi
School of Engineering

TriggerNER (Lee et al., ACL 2020) -> NER

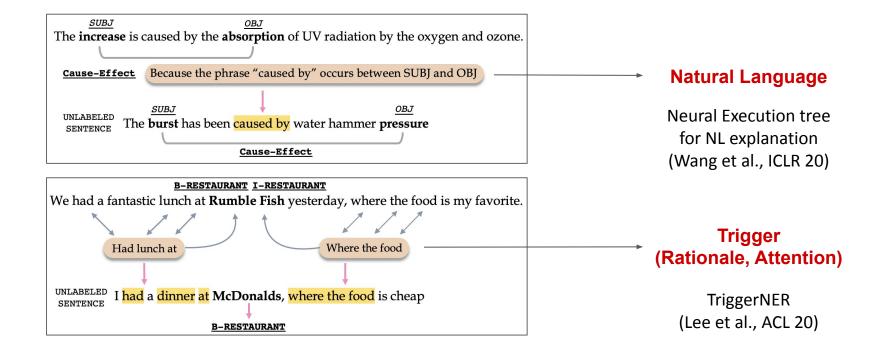
NExT (Wang et al., ICLR 2020) -> RE

LEAN-LIFE (Lee et al., ACL 2020 Demo)

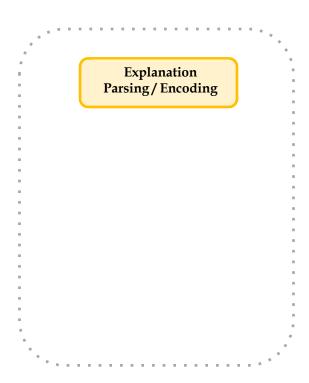
Form of High-level Supervisions (Explanation)

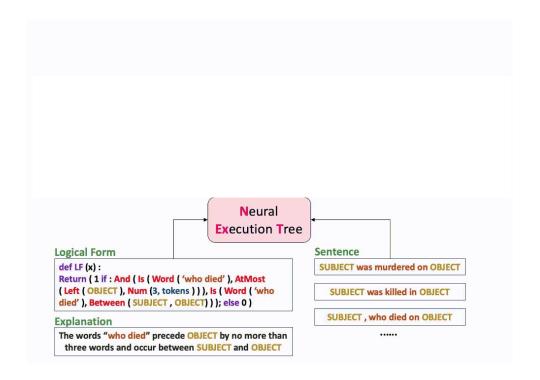


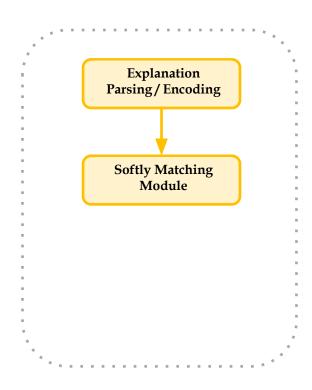
Form of High-level Supervisions (Explanation)

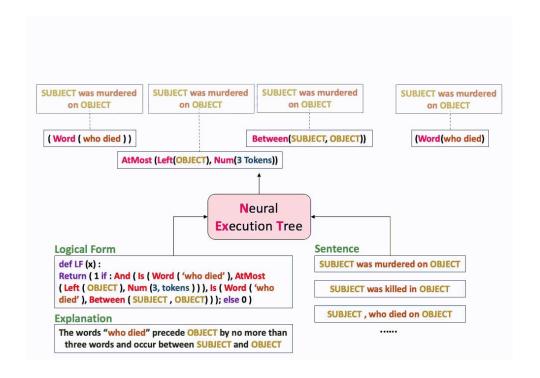


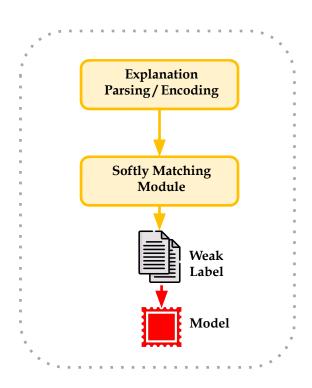
Explanation Parsing/Encoding

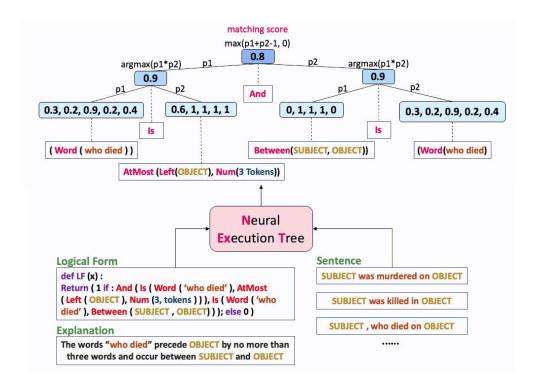


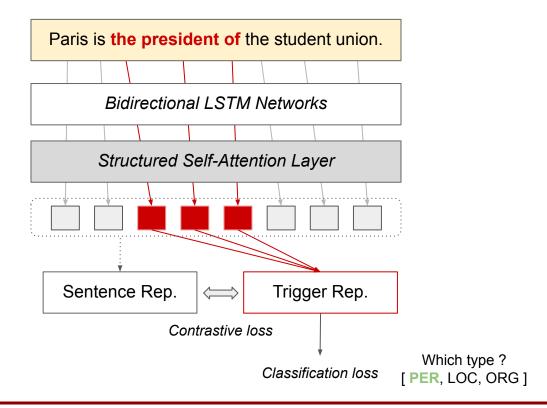


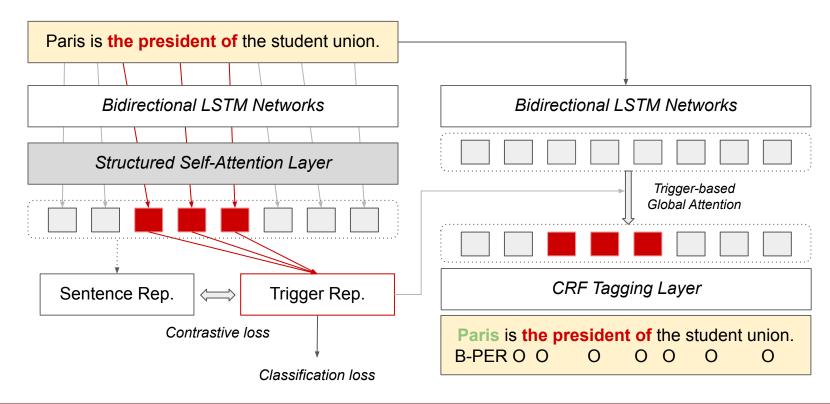




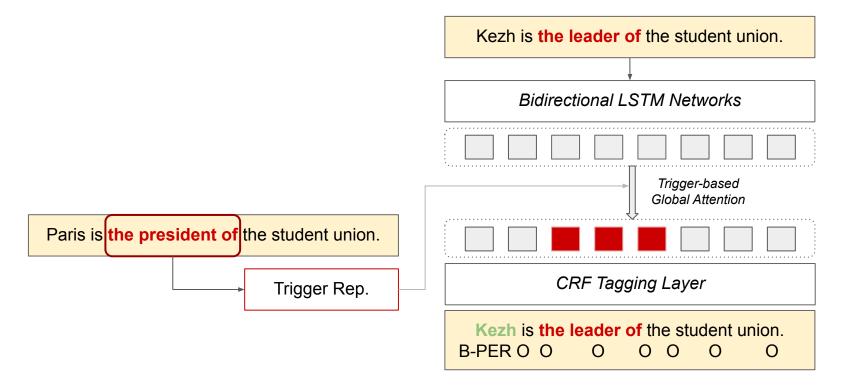




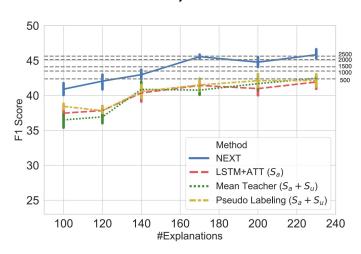




TriggerNER (Inference)

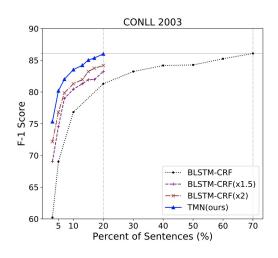


NeXT., ICLR 20



Annotation time cost:
Label + Explanation ~= 2X label

TriggerNER., ACL 20

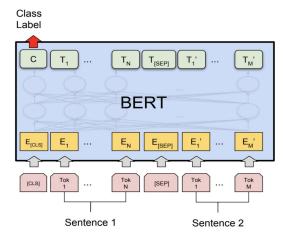


Annotation time cost : Label + Trigger ~= 1.5X Label

Explanation-based Model Debugging

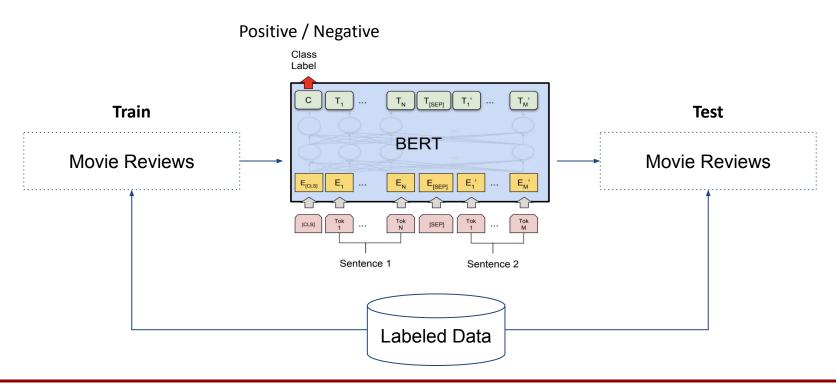
LM Performs well on ID Test set

Positive / Negative

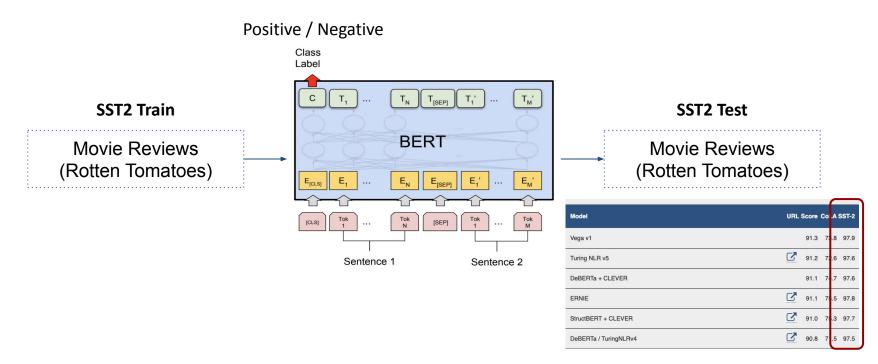


LM Performs well on ID Test set

ID: Identically Distributed

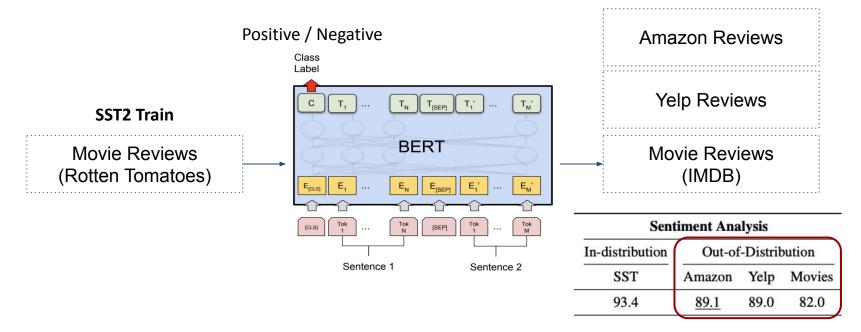


ID: Identically Distributed

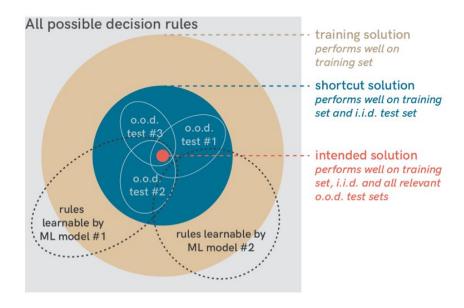


LM Performs well on OOD Test set?

OOD: Out-of-Distribution



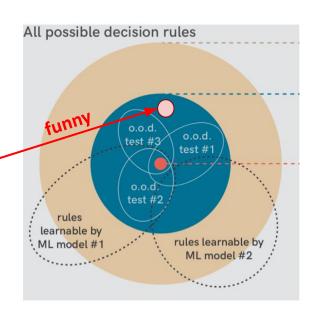
Shortcut Learning



Shortcut Learning

Rich veins of funny stuff in this movie! (Positive)
Is pretty funny. (Positive)
Very funny film (Positive)

Movie Reviews (Rotten Tomatoes)

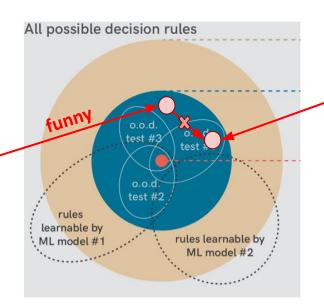


Bias in NLP Model

Shortcut Learning

Rich veins of **funny** stuff in this movie! (Positive) Is pretty **funny**. (Positive)
Very **funny** film (Positive)

Movie Reviews (Rotten Tomatoes)



\$40 million of **funny** child movie (Negative)

Movie Reviews (IMDB)

Bias in NLP Model

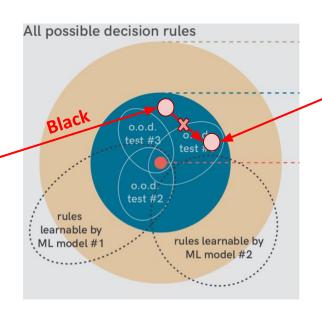
Shortcut Learning -> False Positive -> Social Issue

Whether a scientist of janitor, **black** people are all obedient brutes (Hate)

Blacks have been programmed to love watermelon (Hate)

Black people from the middle ages have always been watermelon-eating (Hate)

Hate Speech Detection
Dataset



In the past the only way to get a job for a **black** person was to be a slave which was not fair for the **black** people (Not Hate)

Real-world Case

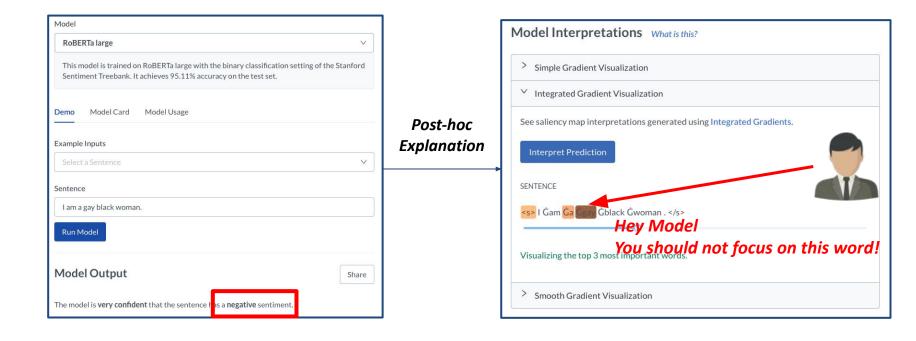
Visualize "shortcut" of the current model

Post-hoc Model Explanation

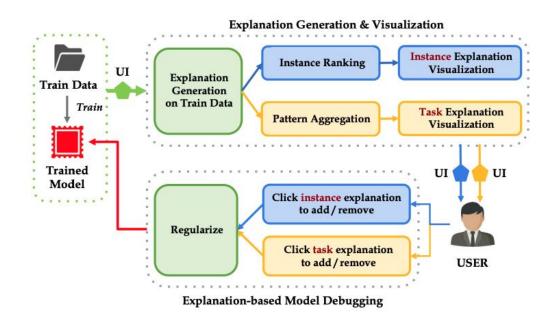


https://demo.allennlp.org/sentiment-analysis/roberta-sentiment-analysis

IDEA: Human feedback on Model Explanation

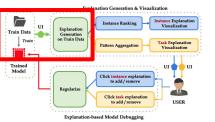


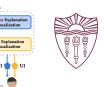
An End-to-End Framework for Interactive Explanation-based Debugging of NLP Models



https://inklab.usc.edu/xmd/

Category of Explanation





Is the explanation for an
Individual instance?
Al model?

Is the explanation obtained
Directly from the prediction?
Requiring post-processing?

Category of Explanation

Orthogonal Aspects

Is the explanation for an

- Individual instance?
 - **Local Explanation**
- Al model?
 - **Global Explanation**

Is the explanation obtained

- Directly from the prediction?
 - Self-Explanation
- Requiring post-processing?
 - Post-hoc Explanation

Category of Explanation

Orthogonal Aspects

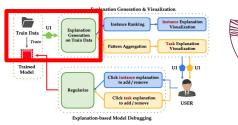
Is the explanation for an

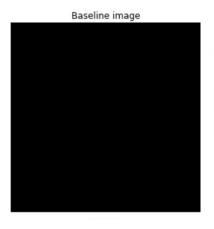
- Individual instance?
 - Local Explanation
- Al model?
 - Global Explanation

Is the explanation obtained

- Directly from the prediction?
 - Self-Explanation
- Requiring post-processing?
 - Post-hoc Explanation

Local Post-hoc Explanation (Integrated Gradients)

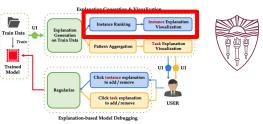


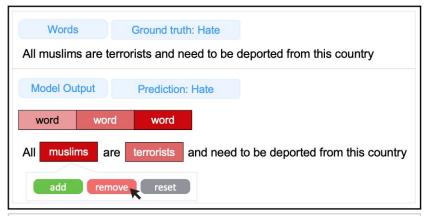


$$\mathsf{IntegratedGrads}_i(x) ::= (x_i - x_i') \times \int_{\alpha=0}^1 \tfrac{\partial F(x' + \alpha \times (x - x'))}{\partial x_i} \ d\alpha$$

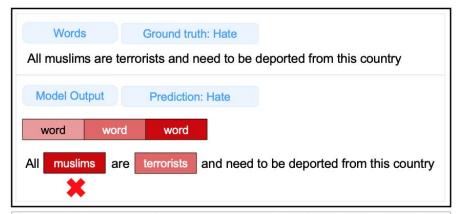
Axiomatic Attribution for Deep Networks., Sundarajan et al., 2017

Instance-level Explanation



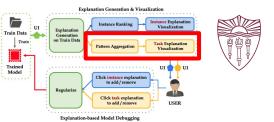


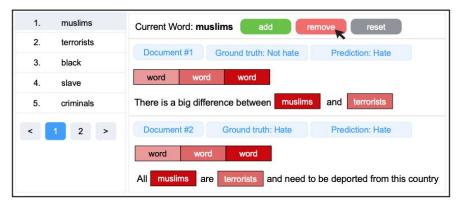
(a) As a user clicks on a word in the sentence, pop-up displaying operation options and a user selects an appropriate operation for that word.



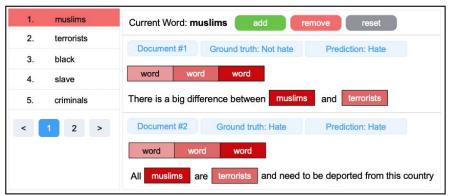
(b) Once the user selects an operation for the selected word, that word in the model output section is marked with an operation symbol (remove: X, add: +).

Task-level Explanation





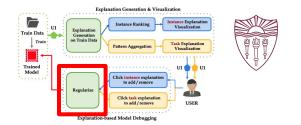
(a) As a user clicks on a word in the list of global explanations in the left panel, examples containing that word are displayed. The user can select the appropriate operation for the word.



(b) After the operation for a word is selected, the word in the left panel is marked with a color of the operation.

Explanation Regularization

Task: SST-2 / Label Space: [Positive, Negative]

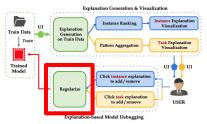


Step								Pred c
	Train instance	I	am	а	gay	black	man	Negative
Train Model & Run Post-hoc Explanation	Attribution score ∞^c (p) toward " <mark>Prediction</mark> "	0.1	0.05	0.05	0.4	0.3	0.1	
3. Get human feedback	Human selection				del	del		
Compute ER term & Re-train Model	Regularized attribution score t_p^c	0.1	0.05	0.05	0	0	0.1	

Explanation Regularization (ER) Term =
$$L_{ER} = \sum_{p \in x} (\phi^c(p) - t_p^c)^2$$

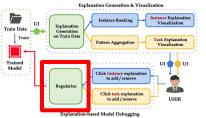
Re-train the model with new loss term = $L = L + L_{ER}$

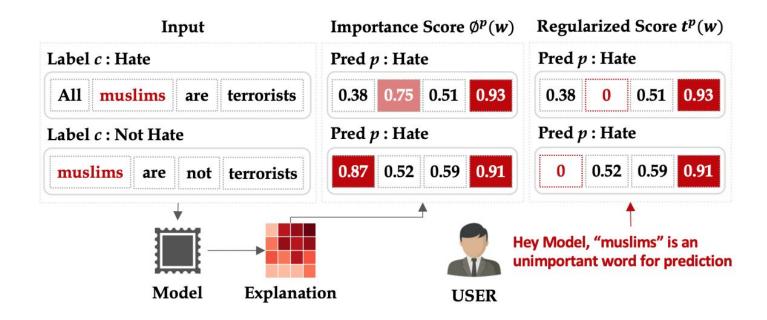
Instance-level Explanation Regularization



Label c: Hate All muslims terrorists and this need to be deported from country are Pred p: Hate Model **Explanation** Importance Score $\emptyset^p(w)$ 0.38 0.75 0.51 0.93 0.58 0.42 0.41 0.65 0.94 Hey Model, you should not focus on this word! Regularized Score $t^p(w)$ 0.38 0.51 0.93 0.58 0.42 0.41 0.65 0.94 0.95 0

Task-level Explanation Regularization





Regularize	ER Loss	Sentiment Analysis					
		In-distribution	Out-of-Distribution				
		SST	Amazon	Yelp	Movies		
None		93.4	<u>89.1</u>	89.0	82.0		
Correct	MSE	94.7	88.4	91.8	94.5		
	MAE	94.0	92.3	94.4	94.0		

Table 1: **Instance Explanation** ID/OOD Performance (Accuracy). Best models are bold and second best ones are underlined within each metric.

Regularize	ER Loss	Hate Speech Analysis					
		In-distribution	Out-of-Distribution				
		STF	HatEval	GHC	Latent		
None	None	89.5	88.2	64.5	67.2		
Correct	MSE	89.2	90.1	62.3	67.9		
	MAE	89.1	90.1	59.3	64.9		
Incorrect	MSE	88.9	86.3	67.9	70.3		
	MAE	89.3	88.8	64.2	67.6		
ALL	MSE	90.0	88.4	63.8	67.0		
	MAE	89.7	86.9	66.5	70.2		

Table 2: **Task Explanation** ID/OOD Performance (Accuracy). Best models are bold and second best ones are underlined within each metric.

Generalize well to Out-of-Distribution data

Q & A